Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription.

نویسندگان

  • O Dhellin
  • J Maestre
  • T Heidmann
چکیده

We have analysed the reverse transcriptase (RT) activity of the human LINE retrotransposon and that of two retroviruses, using an in vivo assay within mammalian (murine and human) cells. The assay relies on transfection of the cells with expression vectors for the RT of the corresponding elements and PCR analysis of the DNA extracted 2-4 days post-transfection using primers bracketing the intronic domains of co-transfected reporter genes or of cellular genes. This assay revealed high levels of reverse-transcribed cDNA molecules, with the intron spliced out, with expression vectors for the LINE. Generation of cDNA molecules requires LINE ORF2, whereas ORF1 is dispensable. Deletion derivatives within the 3.8 kb LINE ORF2 allowed further delineation of the RT domain: > 0.7 kb at the 5'-end of the LINE ORF2 is dispensable for reverse transcription, consistent with this domain being an endonuclease-like domain, as well as 1 kb at the 3'-end, a putative RNase H domain. Conversely, the RT of the two retroviruses tested, Moloney murine leukemia virus and human immunodeficiency virus, failed to produce similar reverse transcripts. These experiments demonstrate a specific and high efficiency reverse transcription activity for the LINE RT, which applies to RNA with no sequence specificity, including those from cellular genes, and which might therefore be responsible for the endogenous activity that we previously detected within mammalian cells through the formation of pseudogene-like structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of integrase in reverse transcription of the Saccharomyces cerevisiae retrotransposon Ty1.

Reverse transcriptase (RT) with its associated RNase H (RH) domain and integrase (IN) are key enzymes encoded by retroviruses and retrotransposons. Several studies have implied a functional role of the interaction between IN and RT during the replication of retroviral and retrotransposon genomes. In this study, IN deletion mutants were used to investigate the role of IN on the RT activity of th...

متن کامل

Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3

Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that,...

متن کامل

Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage

RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone te...

متن کامل

Primer tRNAs for reverse transcription.

Both retroviruses and long terminal repeat (LTR) retrotransposons use cellular tRNAs as primers for reverse transcription during their replication cycles. In retroviruses, primer tRNA is selectively packaged into the virion, where it is placed onto the primer binding site (PBS) of the viral RNA genome and used to prime the reverse transcriptase (RT)-catalyzed synthesis of minus-strand cDNA. Stu...

متن کامل

Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase

Branchpoint nucleotides of intron lariats induce pausing of DNA synthesis by reverse transcriptases (RTs), but it is not known yet how they direct RT RNase H activity on branched RNA (bRNA). Here, we report the effects of the two arms of bRNA on branchpoint-directed RNA cleavage and mutation produced by Moloney murine leukemia virus (M-MLV) RT during DNA polymerization. We constructed a long-ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 16 21  شماره 

صفحات  -

تاریخ انتشار 1997